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Renormalization Group Approach to Random Walks 
on Disordered Lattices 

Jonathan  M a c h t a  1 

One-dimensional random walks with static disorder are analyzed using a real 
space renormalization group procedure. The presence of disorder leads to a 
non-Markovian description of the macroscopic behavior of the random walk. 
We consider random walks with nearest-neighbor hopping described by a 
master equation with both on-site and site-to-site disorder in the transition 
matrix. Site-to-site disorder leads to a generalized diffusion coefficient with a 
t -3/2 long time tail whereas on-site disorder leads to a generalized Burnett 
coefficient with a t -  1/2 long time tail. 

KEY WORDS: Random walks; real space renormalization group; long 
time tails; one-dimension; disorder. 

1. INTRODUCTION 

In this article I will discuss the macroscopic properties of one-dimensional 
random walks with static disorder. The main points of the article are: 
Firstly, that the presence of disorder leads to interesting non-Markovian 
features in the macroscopic description of the random walk and, secondly, 
that a real space renormalization group procedure can be used to analyze 
the effect of strong disorder. 

The model that I will treat can be described by a master equation of 
the form 

d P.(t) = ~, Znmem(t ) (1) 
d l  m 
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Pn(t) is the probability that the walker is at the nth site at time t. The 
transition matrix, Tnm, allows only nearest-neighbor hopping 

Wm-I ( Wm-l- Wm-1)~nm (2) T,m- Wm~,m+~+ 6,m - -  

Cm -l Cm 

The sites are evenly spaced on a line with spacing l. 
The parameters W~ and C n which determine the transition matrix are 

positive numbers which vary randomly from site to site but do not change 
with time. The values of Cn and W, are independently chosen at each site 
and identically distributed from site to site. The distributions for C and 
W - l  must have finite first and second moments. For a physical picture of 
the meaning of these parameters imagine that the random walk represents 
the motion of a particle in a disordered one-dimensional potential with 
equally spaced valleys. C n is then related to the depth of the nth valley 
while W, is related to the height of the barrier separating the nth and 
(n + 1)th valley. 

The model discussed here is a generalization of a model in which the 
W's are random but C is a constant. The long time properties of this model 
have been analyzed by a variety of methods ~1-5) including an exact 
calculation by Zwanzig. (4) All of these calculations are in agreement with 
one another. The interesting feature found in this random walk is that its 
macroscopic behavior must be described by a non-Markovian diffusion 
equation with a memory kernel that decays for long times like t -3/2. If the 
random walk models a one-dimensional conductor, then randomness in the 
W's leads to a square root of frequency behavior in the low-frequency 
conductivity at low frequencies. 

In a previous paper, (l) I showed how to obtain this result using a 
renormalization group method. In the present article this method is ex- 
tended to the more general case where both the W's and the C's are 
random. The new feature which we will find in this case is that the 
generalized diffusion equation describing the macroscopic relaxation of the 
system now takes a more complicated form which includes a non- 
Markovian Burnett (7 4) term with a memory kernel which decays like 
t -1/2. On the other hand, randomness in the C's has no effect on the 
diffusion (7 2 ) part of the generalized diffusion equation and, therefore, has 
no effect on the frequency-dependent conductivity of the system. 

In the next section the macroscopic response function is defined and 
calculated for a system with weak disorder using perturbation theory. In 
the third section the result is extended to the case of strong disorder using 
the renormalization group method introduced in Ref. 1. The paper closes 
with a brief discussion. 
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2. THE RESPONSE FUNCTION FOR A WEAKLY DISORDERED 
SYSTEM 

The viewpoint that I take in analyzing the system is that of response 
theory. Imagine that each member of a collection of systems is allowed to 
equilibrate in the same external potential, Urn, which is then suddenly 
turned off at t = 0. How does this ensemble relax from its initial, local 
equilibrium state to its final, total equilibrium state? 

To answer that question it is convenient to use Laplace transforms. Let 
ffm(Z) be defined by 

Pm(Z) =1~e-ZtPm(t )  dt (3) 

The formal solution of the master equation is 

l~m(Z) = E Gmn(z)Pn(O) (4) 
n 

where the Green's function is given, in matrix form, by 

c ( z )  - 1 
z -  T (5)  

The initial condition we envision is local equilibrium in the presence of 
the field, U. Thus 

Pm(O ) = Cm e -  u,./.~'- (6) 

where 3 -  is the temperature and ,~ is Boltzmann's constant. Averaging over 
the distributions for W and C (indicated by ( > )  with this initial condition 
yields the following equation for the mean relaxation of the perturbed 
ensemble: 

(P.,(z)> = ~] Ym.(z)(P.(O)> (7) 
n 

where the response function, J -  is given by 

~'~7-mn(Z) -~" < amn(z)C,> / c (8) 

with 

c = (C> (9) 

Notice that in the case where the C's are not random the response 
function can be identified with the average Green's function. In the case 
when the C's are random the response function behaves in a quite different 
way than the average Green's function. The latter quantity corresponds to 
the relaxation of an ensemble in which the initial occupation probabilities 
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Pm (0), have been fixed for each member of the ensemble independently of 
the equilibrium probabilities, Cm. The response function describes the 
relaxation of a system from a local equilibrium state where the initial 
deviation from equilibrium is the same for each member of the ensemble. 
In accordance with a macroscopic viewpoint, I will focus primarily on the 
response function and make only brief mention of the behavior of the 
average Green's function in the discussion. 

To make use of the translational invariance of the ensemble it is 
convenient to use Fourier transforms. Let 

P(q, z) = ~ -tim (Z) eiqmt (10) 
m 

which for each member of the ensemble satisfies 

P(q ,z )  = f d q ' G ( q , q ' ; z ) P ( q ' , t  = O) (11) 

where the limits of integration are taken from - ~ r / l  to ~ / l  and the Fourier 
transform of the Green's function is 

l eiqln-iq,lmGnm G(q,q ' ;z)  = ~ ~ (z) (12) 
n m  

Similarly, the mean relaxation of the ensemble from a local equilibrium 
state is given by the Fourier transformed response function, J-q (z) 

( e ( q , z ) )  = ~-q(z) (P(q ,  t = 0)) (13) 

with 

- q') = f d q "  ( G ( q , q ' +  q " ; z ) C ( q " ) ) / c  (14) 3-q(Z)~(q 

For the case of a uniform system defined by the parameters w, e, and l 
the Green's function can be obtained immediately from Eqs. (2), (5), and 
(12): 

cS( q - q') 
C(q ,  q'; z )  = Cq(z )8 (q  - q') = (15) 

zc + 4w sin2(ql/2) 

Now consider a collection of weakly disordered systems. We will use 
perturbation theory and expand the response function around a uniform 
system defined by w = (W~ and e = ( C )  in powers of the deviations from 
the average values 8 W  = W - w and 8C = C - c. The desired result can be 
obtained from a functional Taylor series expansion for the Green's function 
in powers of 5 Tnm , the deviation of T,m from its value in a uniform system 
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with W = w a n d C = c ,  

~-qa(q - q') = Gq6(q - q') + G~(AT(q,q')) 

l f l  ,, q, + ~ ) a q  GqGq+q,,(AT(q, + q")SC(q")) 

+ fdq" G2Gq,,(AT(q,q")AT(q",q')) 

+ . . .  (16) 

Equation (16) follows from Eq. (5), (12), and (14). 
Rather than evaluating the response function itself we shall evaluate a 

generalized transport coefficient defined by 

= 1 
z + qZO(q,z) (17) 

After a straightforward but lengthy calculation, the following expression for 
U(q, t) is obtained 

U(q,z)= D (1 (6W2------~)w 2 +( 4wZr ]'1/2 (*W2))w 2 

-D(_ ) q2D ]( zc 1/2 (aC 2 
(18) 

where the diffusion coefficient, D, is given by 

D = wl2/e (19) 

This expression is valid to second order in the fluctuating quantities 6W 
and 6C and to order z 1/2 for small z holding q2/z fixed. 

The first term on the right-hand side of Eq. (18) is a generalized 
diffusion coefficient with a z 1/2 or t-3/2 long time tail. The second term is a 
generalized Burnett coefficient with a z-1/2 or t-1/2 long time tail. This 
result is mathematically and physically closely related to the long time tails 
found in fluids (7) and the Lorentz gas (8). 

3. RENORMALIZATION GROUP APPROACH 

The results of second-order perturbation theory are valid only for the 
case of weak disorder when higher powers of 6C and 6W can be ignored. In 
the case of strong disorder we can use the renormalization group (RG) to 
transform the original problem into a new problem for which perturbation 
theory can be used exactly in the limit of small q and z. The method is 
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similar to that used by Forster et al/9) in their study of randomly stirred 
fluids. 

The first step in the renormalization group transformation is to elimi- 
nate odd-numbered lattice sites according to the following rule: If the 
walker is at an even numbered site in the original process then it is at the 
same site in the new process. If the walker is at an odd-numbered site in the 
original process then,, in the new process, it is defined to be at the 
even-numbered site which it most recently visited. The next step in the RG 
transformation is to rescale lengths and times and renumber lattice sites so 
that the new process looks as much as possible like the old process. Lengths 
and lattice numbers must be divided by 2 so that the new lattice spacing is 
the same as the old and so that the lattice is again numbered by all the 
integers. For the moment, let the time be rescaled by an arbitrary factor, 
1/X. In the Appendix, recursion relations are obtained which express the 
parameters describing the new process in terms of the original set of C's 
and W's. Denoting the new set of parameters with a prime, the result is 

1 _ 1 (  1 1 ) (20) 
w" 2 + 

' 1 (C2n_l+C2n+l)+- ~ W2n_2"+W2n_l C2n-I C" = C2. + -~ 

- ~- W2,~ ~- W2,,+1 C2,~+ l (21) 

We choose )t -- 4, so that c = ( C )  will be unaffected by the RG transfor- 
mation. The choice of X = 4 is the natural one for time rescaling in a 
diffusive process where the mean squared displacement grows linearly with 
the time. 

The strategy is to iterate the RG transformation may times and then to 
use perturbation theory to calculate U(q,z) from the parameters C~ (N~ and 
W(~ N) of the Nth RG iterate of the original process. Before carrying this out, 
let us consider the errors introduced by the RG transformation. By elimi- 
nating odd-numbered sites an uncertainty of at most one lattice spacing is 
introduced in the position of the walker. An additional error arises from the 
fact that the set (C(~ N), W(m N) } no longer gives a complete description of the 
transformed process. The reason is that, after the elimination of the 
odd-numbered sites, the waiting time for jumping between even-numbered 
sites is no longer exponential so that the process obeys a non-Markovian 
master equation described by a set of functions {Cm~N)(z), W~mN)(z)). The 
recursion relations for these functions are given in the Appendix. The z 
dependence of these functions is analytic, so, to order z 1/2 we can work 
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with the truncated description embodied in the set Cm (m, W~ (u~. Thus, for 
small q and z we can accurately calculate U(q, z) using the parameters of 
the Nth iterate of the RG so long as we take the space and time rescaling 
into account, 

U(q, z) = U(m(2Nq, 4Nz) (22) 

We now apply perturbation theory to the right-hand side of Eq. (22). One 
technical difficulty arises here. The recursion relation for the C's introduces 
correlations between nearest-neighbor C's and between the C's and W's. 
The correlations between the C's and W's do not appear in the perturba- 
tion theory to the order we are working but the correlation of neighboring 
C's introduces an extra term on the right-hand side of Eq. (18). Adding this 
term to Eq. (18) and applying it the result to the right-hand side of Eq. (22) 
yields 

- O  ~ q2D(_____~ 4Nzc~N ~ 1/2 (8C2)(N~ + 2  

z 4w(N~ (c(U ~ )2 (c(U ~ )2 

(23) 

and 

Higher moments of 6W diminish by a factor greater than 2 with each RG 
transformation. Thus, in the limit of large N, we obtain 

and 

W(N) )[~W-1)(N)]-I. . . . .= ( m - l ) - I  ~ w* 
N--~ ~e 

~ m 2 )  (N) 

( w ( ~ )  2 

( ( ~ W - 1 ) 2 )  (N) w * 2 ( ( ~ W - 1 )  2 ) _ A w 
, = -- (27) 

N ~  ( ( w - , ) ( N ) )  2 2 N 2 ~ 

(26) 

where C+ indicates a nearest neighbor of C. 
First consider the average, W (N) and the mean-squared fluctuation, 

(8W2) (u) of W after the Nth iteration of the recursion relations. It follows 
from Eq. (20) that 

1 ' 1 
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A similar analysis can be applied to the average and second cumulants 
of C and C + .  It follows from Eq. (21) and the translational invariance of 
the average that 

c ~N~ = e =-- c* (28) 

and 

((8C)2)(N) + 2 {6C6C+ )(N) 1 ( (6C)  2) _ 1 
-> 2 N C .2 __ 2 u A (29) (c(N)) 2 (c(N))2 N--> oc: 

Putting Eqs. (26)-(29) in the perturbation expansion, Eq. (23), and taking 
the limit N ~ ae yields 

- Z C *  "~1/2 A ] _ D , [ q 2 _  D• ,1 /2  -wj tz--)( ) zxc (30) 

where D* = w*12/c  * is the physical diffusion coefficient. 
Notice that the fluctuation correction to the diffusion coefficient which 

appeared in Eq. (23) vanishes from the final result as N ~ • since it is 
proportional to 2 -  N. For the same reason, we can show that Eq. (30) is an 
exact asymptotic expansion in z in the following sense. Instead of the 
variables q and z choose variable ~ ~ q a / z  and z. Then, for fixed (, Eq. 
(30) becomes exact as z---> 0 for arbitrary values of hw and k c. To see this, 
consider the effect of the additional terms in the perturbation expansion 
which are as large as or larger than z 1/2 for small z and fixed ~. These terms 
have coefficients which involve higher moments of 8W or 8C and for large 
N they diminish faster than 1 /2  u and drop out of the series. Thus we claim 
to have included in Eq. (30) all terms which are as large or larger than z 1/2 
for z---> 0 and ( fixed. 

4. DISCUSSION 

We have seen that the presence of static disorder in a one-dimensional 
random walk leads to non-Markovian macroscopic behavior described by 
the generalized transport coefficient, U(q, z), given in Eq. (30). Fluctuations 
in the transition rates (W) lead to a non-Markovian diffusion coefficient 
with a z 1/2 (t -3/2) long time tail whereas fluctuations in the site energies 
(C) lead to a non-Markovian Burnett coefficient with a z-1/2(t-1/2) long 
time tail. Since the t -  1/2 tail is nonintegrable, disorder in the C's leads to a 
breakdown in the usual, time-independent gradient expansion of the trans- 
port law for the system. 

In Section 2 we chose local equilibrium initial conditions and found 
that the relaxation of an ensemble is described by a response function 
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which differs from the average Green's function. The effect of disorder in 
the C's on the average Green's function was calculated in Ref. 1 and leads 
to a z 1/2 long time tail rather than the z l / 2 ( q 2 / z )  term found here. The 
present result for the response function corresponds to the usual macro- 
scopic experiment and is in agreement with the results of an exact calcula- 
tion by Haus et al. (to) and a mode-coupling calculation of van Beijeren et 

al.( ~) 
We used a renormalization group technique to extend perturbation 

theory to the case of strong disorder. The RG method essentially converts 
the perturbation expansion in the strength of the disorder into an asymp- 
totic small z expansion of which we have found the first two terms. 

APPENDIX 

In this appendix we derive the recursion relations Eqs. (20) and (21). A 
similar and more detailed derivation can be found in Ref. 1. Suppose that 
the random walk process is described by a generalized master equation with 
a transition matrix taking the form 

Win(z) W~.- l(Z) 
Thin(z) -- Cm(Z~ ) ~nm+l + Cm(z ) 

[ win(z)+ wm_ (z) ] 
(A.1) 

The first step is to convert to the continuous time random walk picture. (12) 
Let p , ( z )  be the Laplace transform of the probability density for making a 
jump from site n to site n + 1 after waiting at site n for a time t. Similarly, 
let q , ( z )  the Laplace transform of the probability density for making a 
jump from site n to site n - 1 after waiting at site n for a time t. Using the 
Laplace transformed waiting time distributions, the elimination of the 
odd-numbered sites is simply accomplished by summing the possible ways 
of hopping from site 2n to site 2n + 2 or 2n - 2 with all possible intermedi- 
ate jumps to site 2n + 1 and 2n - 1. The result, after rescaling time by 1/X 
and renumbering the sites, is 

p2o(z)p2~ 
p•(Xz) = l - p 2 , ( z ) q 2 , + ~ ( z )  - q 2 , ( z ) p 2 , _ ~ ( z )  (A.2) 

and 

q2, ( z ) q 2 ,  - 1(z) 
qs = 1 - p 2 , ( z ) q 2 , +  l ( z )  - q 2 , ( z ) p 2 , _ ~ ( z )  (A.3) 

The numerators account for direct hops from 2n to 2n + 2 or 2n - 2 while 
'the denominators are the result of summing the geometric series represent- 
ing the possible jumps back and forth between 2n and 2n + 1 or 2n - 1. 
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The relation between p.(z), q.(z) and C.(z) with W.(z) is 

p.(z) = zC~(z) + W.(z) + W._l(z ) (A.4) 

w._ , ( z )  
q.(z) = zC~(z) + W.(z) + W._l(z ) (A.5) 

Possible recursion relations consistent with Eq. (A2)-(A5) are 

C~,(2~z) = (2/~)[ C2.(z) + p2._l(z)C2._,(z) + q2.+,(z)C2n+,(z) ] (A.6) 

and 

From Eqs. 

2W2n(a) W2n+l(Z) 
W/,(m) = + + (A.7) 

(A.4)-(A.7), Eqs. (A.2) and (A.3) can be verified by tedious 
algebra. It is only ratios of Win(z) and Cm(Z ) which appear in Tj~(z) so that 
each member of the set of functions {C.(z), Wn(z)} can be multiplied by 
the same arbitrary function 'of z without physical consequence. This in- 
duces a freedom in choosing the recursion relations for Wn(z) and C.(z). 
The recursion relations of Eqs. (A.6) and (A,7) have the property that they 
do not change the value of C. = C. (0) or W. = W, (0) in a uniform system 
where C~ = c and IV. = w, if X = 4. The recursion relations for C. and IV., 
Eqs. (20) and (21) follow from Eqs. (A.4)-(A.7) by setting z = 0. In Ref. 1, 
IV. was called % and C. called U.. 

REFERENCES 

1. J. Machta, Phys. Rev. B 24:5260 (1981). 
2. S. Alexander, T. Bernasconi, W. R. Schneider, and R. Orbach, Rev. Mod. Phys. 53:175 

(1981); S. Alexander, T. Bernasconi, W. R. Schneider, R. Billet, and R. Orbach, Proceed- 
ings of the International Conference on Low-Dimensional Conductors, Boulder, Colo- 
rado, 1981. 

3. J. Bernasconi and W. R. Schneider, this issue, J. Stat. Phys. 30:375 (1983). 
4. R. Zwanzig, J. Star. Phys. 28:127 (1982). 
5. I. Webman, Phys. Rev. Lett. 47:1496 (1981). 
6. J. W. Haus, K. W. Kehr, and K. Kitahara, Phys. Rev. B 25:4918 (1982). 
7. B. J. Alder and T. E. Wainwright, Phys. Rev. A 1:18 (1970); J. R. Dorfman and H. van 

Beijeren, in Modern Theoretical Chemistry, B. J. Berne, ed. (Plenum, New York, 1977), 
Vol. 6, p. 65. 

8. M. H. Ernst and A. Weyland, Phys. Lett. 34A:39 (1971). 
9. D. Forster, D. R. Nelson, and M. J. Stephen, Phys. Rev. A 16:732 (1977). 

10. J. W. Haus, K. W. Kehr, and J. W. Lyklema, Phys. Rev. B 25:2905 (1982). 
11. H. van Beijeren, J. R. Dorman, M. H. Ernst, and J. Machta (to appear). 
12. E. W. Montroll and B. J. West, Chapter 2 in Studies in Statistical Mechanics, Vol. VIII, 

Fluctuation Phenomena. E. W. Montroll and J. L. Lebowitz, eds. (North-Holland, Amster- 
dam, 1979); see also R. Zwanzig, this issue, J. Stat. Phys. 30:275 (1983). 


